Учет временной стоимости денег 2 Простые и сложные проценты 2 icon

Учет временной стоимости денег 2 Простые и сложные проценты 2

НазваниеУчет временной стоимости денег 2 Простые и сложные проценты 2
страница2/18
Дата конвертации08.10.2012
Размер1.32 Mb.
ТипАнализ
1   2   3   4   5   6   7   8   9   ...   18
^

Задачи и решения


1. На депозит на срок два года положены 10000 руб. Какую сумму должен получить вкладчик в конце срока при начислении простых (сложных) процентов по ставке 18% годовых?

Для случая простых процентов получаем:

FV = PV *(1+n*i) = 10000*(1+2*0,18) = 13600 руб.

Для случая сложных процентов:

FV = PV *(1+ i)n= 10000*(1+*0,18)2= 13924 руб.

2. Найти период времени в течение которого первоначальная сумма вклада удвоится для случая простой и сложной процентной ставки равной 10%.

Для случая простой ставки

FV = 2*PV = PV *(1+n*i),

2 = *(1+n*0,1),

n = (2-1)/0,1 =10 лет.

Для случая сложной ставки

FV = 2*PV = PV *(1+i)n

(1+i)n = 2,

n*Ln(1+0,1) =Ln2,

n= Ln2/ Ln(1+0,1) = 0,69/0,095 = 7,26 года.

  1. Найти процентную ставку (простую и сложную) при которой первоначальная сумма вклада удвоится за десять лет.

Для случая простой ставки

FV = PV *(1+n*i),

FV = 2*PV = PV *(1+10*i),

(1+10*i) = 2,

i = 1/10 = 0,1.

Для случая сложной ставки

FV = 2*PV = PV *(1+i)10

i = 2 1/10 – 1 = 0,072.

4. На вашем банковском вкладе проценты начисляются на основе «плавающей» ставки, которая изменяется каждый год. Три года назад вы положили на счет 10000 руб., когда процентная ставка была 15%. В прошлом году она упала до 12%, а в этом году установлена на уровне 10%. Какая сумма будет у вас на счете к концу текущего года? Расчеты произвести для случая простых и сложных ставок.

Для случая простой ставки

FV = PV *(1+n1*i1 + n2*i2 + n3*i3) = 10000*(1+1*0,15+1*0,12+1*0,1) = 13700 руб.

Для случая сложных ставок

FV = PV *(1+ i1)n1 *(1+ i2)n2 *(1+ i3)n3 = 10000* *(1+ 0,15)1*(1+ 0,12)1*(1+ 0,1)1 = 10000* 1,15*1,12*1,1 = 14168 руб.

5. В банк на срочный сберегательный счет положено 1000 руб. на два года по ставке 9% годовых, с дальнейшей пролонгацией на следующие три года по ставке 6%. Найти наращенную сумму через пять лет при простых и сложных ставках.

Для случая простой ставки

FV = PV *(1+n1*i1 + n2*i2) = 1000*(1+2*0,09+3*0,06) = 1360 руб.

Для случая сложных ставок

FV = PV *(1+ i1)n1 *(1+ i2)n2 = 1000* *(1+ 0,09)2*(1+ 0,06)3 = 1417 руб.

  1. Вексель стоимостью 100 млн. руб. учтен банком за 2 года до погашения по сложной ставке 20 % годовых. Какую сумму получит векселедержатель по истечении срока договора.



^

Частота начисления сложных процентов



Процентная ставка задается, как правило, как номинальная годовая процентная ставка – это исходная ставка, которую назначает банк для начисления процентов. Эта ставка может быть также использована для начисления процентов один раз в году. В этом случае, если начисление процента осуществляется чаще, чем 1 раз в год, например, ежеквартально, или ежемесячно, рассчитывается эффективная годовая ставка, которая эквивалентна процентной ставки при условии начисления процентов один раз в год.

Предположим, что годовая процентная ставка составляет, например 6% в год, при этом проценты начисляются ежемесячно. Это означает, что проценты начисляются на ваш счет каждый месяц в сумме 1/12 от 6%, или 0.5%. Эффективная процентная ставка может быть найдена из выражений

FV = (1.005)12 = 1.061678

Iэ = 1.06168-1 = 0.061678 = 6.1678% в год.

Общая формула для вычисления действующей годовой процентной ставки выглядит следующим образом:

Iэ = (1+i/m)m – 1,

I – номинальная годовая ставка, m – число начислений процента в году.

При увеличении частоты начисления процентов эффективная процентная ставка увеличивается. Если проценты начисляются непрерывно, то эффективная процентная ставка определяется из соотношения

Iэ = Lim (1+i/m)m – 1 = ei - 1= 2.71828i -1

m  бесконечности.

В нашем примере e 0.06 - 1= 6.1836 в год.

Пример. Номинальная годовая ставка составляет 12% в год. Начисление процентов производится ежеквартально. Найти годовую эффективную ставку

Iэ = (1+0,12/4)4 – 1 = 12,55%.
^

Текущая стоимость денег


Процедура расчета текущей (приведенной) стоимости денег противоположна вычислению будущей стоимости. С ее помощью мы можем определить, какую сумму необходимо вложить сегодня для того, чтобы получить определенную сумму в будущем.

Общая формула для вычисления приведенной стоимости 1 руб. через n периодов имеет вид:

г
де PV – текущая стоимость денег,

FV – будущая стоимость денег,

n – количество временных интервалов,

i – ставка дисконтирования.

Пример. Какую сумму необходимо положить на счет, чтобы через пять лет получить 1000 руб. (i=10%)

PV = 1000 / (1+0.1)^5 = 620.92 руб.

Таким образом, для расчета текущей стоимости денег мы должны известную их будущую стоимость поделить на величину (1+i)n . Текущая стоимость находится в обратной зависимости от величины ставки дисконтирования. Например, текущая стоимость денежной единицы, получаемой через 1 год при ставке 8% составляет

PV = 1/(1+0,08)1 = 0,93,

А при ставке 10%

PV = 1/(1+0,1)1 = 0,91.

Текущая стоимость денег находится также в обратной зависимости от числа временных периодов до их получения.

Рассмотренная процедура дисконтирования денежных потоков может быть использована при принятии решений об инвестировании. Наиболее общее правило принятия решений – правило определения чистой приведенной стоимости (NPV). Суть его состоит в том, что участие в инвестиционном проекте целесообразно в том случае, если приведенная стоимость будущих денежных поступлений от его реализации превышает первоначальные инвестиции.

Пример. Имеется возможность купить сберегательную облигацию номиналом 1000 руб. и сроком погашения 5 лет за 750 руб. Другим альтернативным вариантом инвестирования является размещение денег на банковском счету с процентной ставкой 8% годовых. Необходимо оценить целесообразность инвестирования средств в приобретение облигации.

Для расчета NPV в качестве процентной ставки или в более широком смысле ставки доходности, необходимо использовать альтернативную стоимость капитала. Альтернативная стоимость капитала – это та ставка доходности, которую можно получить от других направлений инвестирования. В нашем примере альтернативным видом инвестирования является помещение денег на депозит с доходностью 8%.

Сберегательная облигация обеспечивает денежные поступления в размере 1000 руб. через 5 лет. Текущая стоимость этих денег равна

PV = 1000/1.08^5 = 680.58 руб.

Таким образом, текущая стоимость облигации составляет 680.58 руб., в то время как купить ее предлагают за 750 руб. Чистая текущая стоимость инвестиций составит 680.58-750=-69.42, и инвестировать средства в приобретение облигации нецелесообразна.

Экономический смысл показателя NPV состоит в том, что он определяет изменение финансового состояния инвестора в результате реализации проекта. В данном примере в случае приобретения облигации богатство инвестора уменьшится на 69.42 руб.

Показатель NPV может быть также использован для оценки различных вариантов заимствования денежных средств. Например, вам нужно взять в долг 5000 дол. для приобретения автомобиля. В банке вам предлагают заем под 12 % годовых. Ваш друг может одолжить 5000 дол., если вы отдадите ему 9000 дол. через 4 года. Необходимо определить оптимальный вариант заимствования. Рассчитаем текущую стоимость 9000 дол.

PV = 9000/(1+0.12)^4 = 5719.66 дол.

Таким образом, NPV данного проекта составляет 5000-5719.66= -719.66 дол. В данном случае лучшим вариантом заимствования является банковский кредит.

Для расчета эффективности инвестиционных проектов можно использовать также показатель внутренней нормы доходности (internal rate of return) IRR. Внутренняя ставка доходности – это такое значение дисконтной ставки, которое уравнивает приведенную стоимость будущих поступлений и приведенную стоимость затрат. Другими словами, IRR равна процентной ставки, при которой NPV = 0.

В рассмотренном примере приобретения облигации IRR вычисляется из следующего уравнения

750 = 1000/(1+IRR)^5

IRR = 5.92%. Таким образом, доходность облигации при ее погашении составляет 5.92% в год, что существенно меньше доходности банковского депозита.

1   2   3   4   5   6   7   8   9   ...   18




Похожие:

Учет временной стоимости денег 2 Простые и сложные проценты 2 iconМаргрит Кеннеди Деньги без процентов и инфляции
Заблуждение No 2: Проценты мы платим только тогда, когда берем деньги под проценты
Учет временной стоимости денег 2 Простые и сложные проценты 2 iconХимия 8 класс Зачет №1
Из ниже перечисленных веществ выписать простые и сложные вещества so₂; Cl ₂; H₂O; H₂; Al; NaOH; CuSO₄; N₂ koh; H₂SO₄; Cu; Al₂O₃;...
Учет временной стоимости денег 2 Простые и сложные проценты 2 iconИтоговая работа по теме "Бессоюзные сложные предложения"
А. в бессоюзных сложных предложениях простые предложения связываются в устной речи интонацией
Учет временной стоимости денег 2 Простые и сложные проценты 2 iconПеречень документов, представляемых Заявителем
Дополнительно представляемые документы Заявителем при постановке на учет для получения путевки, приобретенной в пределах 100% стоимости...
Учет временной стоимости денег 2 Простые и сложные проценты 2 icon11 класс Прочитайте параграф 18 учебника «Вещества и их свойства». Выполните задания
Дайте определение простых и сложных веществ. Приведите примеры веществ обоих типов. Бывают ли простые вещества органическими, сложные...
Учет временной стоимости денег 2 Простые и сложные проценты 2 iconПояснительная записка к сводному сметному расчету стоимости строительства Пришкольного стадиона с искуственным покрытием в. Котовске
Сводный сметный расчет стоимости строительства составлен в соответствии с мдс 81-35. 2004 «Методика определения стоимости строительной...
Учет временной стоимости денег 2 Простые и сложные проценты 2 iconПостановление Федеральной комиссии по рынку ценных бумаг от 22 октября 2003 г. N 03-42/пс г. Москва о порядке и сроках определения стоимости чистых активов акционерных инвестиционных фондов,
Москва о порядке и сроках определения стоимости чистых активов акционерных инвестиционных фондов, стоимости чистых активов паевых...
Учет временной стоимости денег 2 Простые и сложные проценты 2 iconУрок №21 Деньги и их функции Предмет: экономика. Класс: 10. Дата: 02. 02. 2012 г. Учитель: Хаматгалеев Э. Р
Цель – познакомиться с причинами возникновения денег, основными формами и функциями денег
Учет временной стоимости денег 2 Простые и сложные проценты 2 iconУниверситет международного бизнеса кафедра «Бухгалтерский учет и аудит» «Утверждаю»
Абеновой М. Х., на основании типовой программы дисциплины «Управленческий учет -2» для высших учебных заведений специальности 050508...
Учет временной стоимости денег 2 Простые и сложные проценты 2 iconДенег в семье должна быть открытой
Следуя четким рекомендациям, вы легко и быстро научитесь составлять семейный бюджет и достигать финансовых целей даже тогда, когда...
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©cl.rushkolnik.ru 2000-2013
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы